Transcendence of Formal Power Series with Rational Coefficients
نویسنده
چکیده
We give algebraic proofs of transcendence over Q(X) of formal power series with rational coeecients, by using inter alia reduction modulo prime numbers, and the Christol theorem. Applications to generating series of languages and combinatorial objects are given.
منابع مشابه
HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملComputational Classification of Numbers and Algebraic Properties
In this paper, we propose a computational classification of finite characteristic numbers (Laurent series with coefficients in a finite field), and prove that some classes have good algebraic properties. This provides tools from the theories of computation, formal languages, and formal logic for finer study of transcendence and algebraic independence questions. Using them, we place some well-kn...
متن کاملMean asymptotic behaviour of radix-rational sequences and dilation equations (Extended version)
The generating series of a radix-rational sequence is a rational formal power series from formal language theory viewed through a fixed radix numeration system. For each radix-rational sequence with complex values we provide an asymptotic expansion for the sequence of its Cesàro means. The precision of the asymptotic expansion depends on the joint spectral radius of the linear representation of...
متن کاملAsymptotic Behaviour Of
Abstract. The generating series of a radix-rational sequence is a rational formal power series from formal language theory viewed through a fixed radix numeration system. For each radix-rational sequence with complex values we provide an asymptotic expansion for the sequence of its Cesàro means. The precision of the asymptotic depends on the joint spectral radius of the linear representation of...
متن کاملAnother proof of Soittola's theorem
Soittola’s theorem characterizes R+or N-rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate algebraic and analytic arguments. c © 2008 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 218 شماره
صفحات -
تاریخ انتشار 1999